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Abstract 

An explicit relation between the density matrix and its s-state part is analyzed for 
electron closed shells moving in a bare Coulomb potential. The density matrix has a 
simple separable form in terms of r l + r  2 and Ir 1 -r21. It is demonstrated that for an 
arbitrary number of closed shells, the off-diagonal dependence is simply polynomial in 
the Ir I - r2l coordinate. 

The problem of expressing the density matrix 7(rl, r2) in terms of the electron 
density p(r) remains of considerable theoretical interest. The investigation of simple 
model systems, for example, noninteracting electrons moving in a bare Coulomb 
potential V(r) = -Ze2/r,  can be valuable in pointing the way to relations which may 
have approximate validity in more complex systems. It should be pointed out that 
for this model, a spatial generalization of Kato's theorem reads [1] 

3p 2Z ~2 
3----r ao Ps (r), ao me 2 , (1) 

while the density matrix has the form [2] 

,,,r, r2)= xy, 
x  y/IXy (  (2) 

where 

x = r l + r 2 + l r l - r 2 1 ,  y = r l + r 2 - 1 r l - r 2 1 .  (3) 

The density matrix depends on just two independent coordinates x and y rather than 
rl, r2 and r12. This results from the existence of additional constants of motion 
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which is known as the Runge-Lenz vector [3]. The electron density itself and the 
full density matrix are determined solely by the density matrix for s states. One can 
make the above relation explicit and consider the form of the density matrix for 
particular shells. March and Santamaria [4] investigated the relation between the 
density matrix and density functional theory for K plus L shells. For K shells, the 
result is almost trivial: 

1 (Z/3~-0 ( Zao 1 r(rl,r2) = exp - - - ( r l  +r2) , (4) 

while for K plus L shells, the matrix has the form 

where 

( ) ?'(rl  'r2) = P  2 +[r l  - r z lZF  rl +r22 ' (5) 

64~ exp ao (6) 

and p(r) is the density. The above equation has some interesting features. Only the 
first term makes a contribution to the diagonal density, the second still contributes 
to the kinetic energy. The purpose of this note is to demonstrate that the density 
matrix for an arbitrary number of closed shells has the following structure: 

l ) ) ' ( r l  r2) = P  2 +[r l  -r2[ZF1 rl +r2 
' 2 

+ [r l_r2[4F2(r l+r2)  2n (r l  + r 2 )  
2 + . . . + J r 1 - r 2 [  F~ 2 " (7) 

Again, only the first term contributes to the diagonal density, eqs. (4) and (5) are 
particular cases of eq. (7). 

In order to demonstrate that the density matrix has the structure given by 
eq. (7) for an arbitrary number of closed shells, let us consider the product of two 
s-type radial hydrogenic wave functions: 

RnO (r)R~o (r') 

d d [exp(q = Cffo exp(-  ½(q + q')) dq dq--; d" d" [q"q'"exp(-(q+q'))~], (8) 
+ q') dq~ dq '~ 

where Cno is a normalization factor and q = (2Z/nao)r (see [5] or any standard 
textbook). Performing the transformation to the new coordinates: 
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u = q + q' ,  (9) 

v = q - q' ,  (10) 

the product of the radial wave functions eq. (8) becomes 

Rno(r)Rno(r') = C20 -~ g Ou 2 Ov 2 [exp(u)W(u,v)], (11) 

where 

W(U,?))  = ( ~2 azl" E Ou z 0v 2 (u 2 - vz)" exp(-u)] .  (12) 

Using the binomial expansion, the last expression can be rewritten as 

. • n 0 2(n- j )  ~2j , , , , (uZ(n- i )v2 iexp  (-uS]" (13) 
j i 

In the last expression, the differentiation with respect to the v coordinate can be 
easily carried out and leads to the result 

W ( u , v ) =  Z ~.bfJ v2(i-j) 02("-J) (u2("-i)exp(-u)),  
Ou2(n - j )  

j i 
where 

1/ 

(14) 

(15) 

By changing the summation indexes, i.e. k = i + j  and l = i - j ,  the v coordinate can 
be explicitly separated: 

with 

W(u, v) : ~,vZlGt (u), (16) 
l 

=  b-7, k 8v2("-½ (k-t))(u2("-½(k+t))exp(-u))" (17) 

Substituting the above result into eq. (11), the product of two s-type functions 
becomes 

' 1 e x p ( - l u ) ( 0 2  0 2 )  1 Rno(r)Rno(r )= C20 -~ 2 OU 2 ~'~V 2 exp(u)EvZlGt (u) . (18) 
l 

Finally, performing differentiation in the last equation, one obtains: 
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where 

and 

Rno(r)R~o(r') P(u;n)+ E 2m = v Qm(u;n), 
r n = l  

1 lU ) ~2 
P(u;n) = C~o -'4"; exp( 2 ~ u  2 Go(u) 

(19) 

(20) 

Q,. (u; n) 

=C,~  1 e x p ( L u ) [  32 ] --~ a -~u2Gm(u)+Gm(u)+2(m+l ) (2m+l )Gm+l(U) .  (21) 

Let us return to the expression for the density matrix given by eq. (2) and 
the coordinates given by eq. (3). Identify u as 

U = r I + r 2 ,  

and v as 

v = Ir~-  r21 

(22) 

(23) 

(i.e. x --- u + v and y = u - v), the expression for 7(r~, r 2) in terms of u and v becomes: 

y ( r l , r z ) = - ( 2 v )  - 1 - ~  (u 2 - v  2)Ys - - ,  2 " (24) 

Evidently, from eq. (I9) the density matrix for s states takes the form 

(.+va ,  -v2 )-- Ep(.;n)+E. . m_-,X v2me (u;n), (2s) 

and finally the density matrix becomes: 

)'(rl , r 2 ) =  ~.,P(u;n)+ ~.~ v 2m ~(1 +m-u2)Qm(u;n) .  
n m = l  n 

(26) 

We now identify Y,P(u; n) as the density, i.e. 

and 

rl + r2 I (27) ~,P(u;n) = p 2 ' 

~ ' ( l + m - u 2 ) Q m ( u ; n ) = F m ( q n  2+r2 ) ,  (28) 

then eq. (26) becomes identical to the equation for the density matrix given by 
formula (7). 


